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Abstract-The linear stability of three-component system in a porous medium is investigated in the presence 
of a gravitationally stable density gradient. Particular attention is given to systems with P, = 10S4, tci >> K~, 
K, and Y >> K*. It is shown that the boundary for the onset of overstability can be approximated by two planar 
asymptotes in a Rayleigh number plane. Gverstable and salt-finger modes are found to be simultaneously 
unstable when the density gradients due to the components are of the same sign and the effect of 
permeability of the porous medium is to suppress the regions of convection and salt-finger modes in the 

Rayleigh number plane. 

NOMENCLATURE 

= ?rI(trZ + 1); 
concentration of the ith component 

[kg me']; 
concentration difference between lower 
and upper layers [kg mm3]; 
acceleration due to gravity [m s-*1; 
a vertical length scale [m] ; 
permeabiIity of porous medium Em”]; 
pressure of the system [kg m- l se’]; 
= (u,u,w), velocity vector [m s-r]; 
Cartesian co-ordinates [m] ; 
time Es] ; 
= k~h2. porous parameter; 
= a2 P,; 
= v/K~, the Prandtl or Schmidt number; 
= g~~~~ACi/v~~, Rayleigh number for the 
ith component. 

Greek symbols 

;, 
the dimensionless wave number; 
expansion coeffjcients [m3 kg-‘]; 

Kj, diffusivity of the ith component [m2 s-i]; 
V, kinematic viscosity of fluid [m2 s- ‘1; 
P&1 density and mean density of fluid; 
rjr = KJK$, ratio of diffusivities; 
ii, = nZa2Ri/ab ; 
4, = 2, + R,, the salinity Rayleigh number; 
w, = o/a2; 
6, = frequency [s-r]. 

I. INTRODUCTION 

FOR MANY areas of technology such as chemical 
engineering, petroleum industries and geothermal 

* Permanent address: Institute B for Thermodynamics. 
Technical University of Munich, 8 Munchen 2, Arcisstr-21, 
West Germany. 

activity the study of heat and mass transfer through a 
porous medium is of significance. This is usually 
influenced by free convection whereby the void fluid 
comes into circulation as a result of density differences 
caused by temperature or concentration. Therefore, 
there has been considerable interest recently in the 
study of convection through a porous medium (see 
[l]). The available literature on the study of free 
convection through a porous medium is usually 
limited by a single component fluid in which there isno 
stabilizing or destabilizing gradient of concentration. 

Free convection of a two-component fluid saturated 
porous layer driven by the differential diffusion of two 
properties such as heat and salt is also of interest in 
numerous practical fiefds, particularly in some oil 
recovery techniques. Although copious literature on 
this dealing with both linear and non-linear theories is 
available in the case of pure viscous flow (see [2]), very 
little is known of the case of a fluid saturated porous 
layer. Nield [3] has studied the convection of a two- 
component fluid saturated porous Iayer using 
infinitesimal amplitude analysis by considering two 
different diffusive properties, one of which is stabilizing 
and the other destabilizing. Here the emphasis is put on 
the boundary conditions rather than determining 
analytical expressions for the onset of convection and 
heat transport. 

Rudraiah and Prabhamani [4, 51 have studied the 
linear and non-linear stability of a two-component 
fluid in a porous medium in the presence of thermal 
diffusion (i.e. Soret effect) using the Liapunov 
technique. Their analysis gives only the condition for 
the onset of convection but says nothing about the 
prediction of heat transport. Recently Rudraiah cr al. 
[6] and Srimani [7] have made a detailed analysis of 
convection in a two-component fluid saturated porous 
layer, using the local non-linear stability analysis, 
where the condition for onset of convection and its 
effect on heat transfer are reported. 
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The literature cited above concentrates only on 
doubly diffusive convection in a fluid saturated porous 
medium. There are many fluid saturated porous 
systems, however, in which more than two components 
are present. For example, in geothermal regions the 
lower part of the earth’s crust, particularly the 
aquifers, is considered to be a fluid saturated porous 
medium consisting of multi-components of fluid. An 
extensive body of chemical and physical data of multi- 
component fluid saturated porous medium in 
geothermal regions now exists and a proper theory has 

to be developed on the basis of this data. Therefore, a 
proper understanding of field behaviour in geothermal 
regions should include convection of a multi- 

component fluid saturated porous medium. 

In the usual viscous flow, Griffiths [S, 9J has 
considered the influence of a third diffusive component 
upon the onset of convection and has shown that 
oscillatory and direct salt-finger modes are 
simultaneously unstable under a wide range of 
conditions when the density gradients due to the 
components with the greatest and smallest difiusivities 
are of the same sign. For geophysical applications 
mentioned above, we have to take into account the 
effect of resistance offered by the solid particles to the 
fluid because the aquifers are considered to flow 
through porous media. Therefore, the present analysis 
was undertaken to provide results of a small amplitude 
stability analysis for linear concentration gradients of 
three components in a porous medium following the 
analysis of Griffiths [8]. 

2. MATHEMATICAL FORMULATION 

Consider a fluid saturated porous layer between two 
horizontal parallel stress free boundaries at 2 = 0 and 
h and containing three diffusing properties such that 

ti, > K2 > KS (2.1) 

where ~~(i = 1, 2, 3) is the coefficient of molecular 
diffusion for the ith component. The boundaries are 
perfectly conducting for solute and the z axis is chosen 
to be directed vertically upwards and the basic 
property gradients are assumed to be vertical and 
linear. The concentration difference between the 
boundaries is ACi with the sign convention that ACi > 
0, when the component is destabilizing. With the 
assumptions and approximations which are frequently 
used for convection in a homogeneous porous medium 
saturated with three component Boussinesq fluid, the 
general equations may be written as 

(k - JC~V~)C~ = - V .(qCi) 

v q=o 

P = Pm [I + CDFil. 

(2.3) 

(2.4) 

(2.5) 

In order to carry out the analysis it is convenient to 
non-dimensionalize equations (2.2-2.4) scaling with h 
and ICY. We then have Rayleigh numbers Ri, diffusivity 
ratios TV, Prandtl number Pr and a porous parameter 
P, given by 

R_ = Sh3BiACi Ki 
1 

, si =-, pr = z, 
P, = k/l? KI 

K;i = 1,2,3) (2.6) 

In this paper, we consider only two-dimensional 
motions with velocity q = (u,O,w) and the stream 
function II/ as 

w 
u=--, w= _!Y 

iiZ SX’ 
(2.7) 

Then the linearized perturbation equations (2.2-2.4) 
after eliminating the pressure are 

(2.9) 

where the Qi are non-dimensional concentrations. The 
boundary conditions are 

oi = $ = 3 = 0, 
dZ2 

at z = 0 and 1. (2.10) 

3. LINEAR STABILITY ANALYSIS 

Eliminating Oi in equations (2.8) and (2.9) and 

assuming the normal mode solutions of the form euz 
cos KC(X sin nz with 0 = or + io, we obtain the 
dispersion relation 

- 2, - A2 - E,, + w 1 I T2 + T273 + T3 

p; 

- (T2 + T,)& - (1 + T,)i., - (1 + T2)i., 
1 

1 
, . 

+ T2T3 __+!Z_!? =O 
P; T2 T3 > 

(3.1) 

with w = a/a2, Pi = a2P,, i., = (n2a2/a6) Ri and a2 = 
7c2(a2 + 1). 

We note that this dispersion relation (3.1) is of 4th- 
order in contrast to the cubic equation obtained by 
Rudraiah et al. [6] in the case of two-component fluid. 
We also note that when P;+l (i.e. P, = l/a2) this 
dispersion relation tends to the one given by Griffiths 
[S] in the case of viscous flow. In other words when P, 

=7t -‘(a2 + 1)-l we can get the stability results of 
viscous flow discussed by [8]. This surprising result 
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may be due to the fact that although the order of the 
derivatives in Darcy and viscous flow are different the 
order of the time derivatives remain the same. This 
result is purely local and not global. 

3.1. Marginal state 
Marginal state is valid when ur = 0 and ui = 0. For 

the most unstable mode at marginal stability 

(3.2) 

Relations (3.1) and (3.2) imply that for the most 
unstable mode w is real and positive in the half space 

72 + 73 D=i+_ 1 

I I 
+ g(7, + 73 + 7273). 

Equation (3.5) together with (3.2) and (3.6) describes a 
conicoid 

a,Rf + a,R: + a,R$ + a,R,R, 

a,R,R, + a,R,R3 + 8n4 

x (a,R, +aeR, +a,R,) + (8n”)‘a, = 0 (3.7) 

where 

(3.3) a2 = - 72 + F (1 + 73), 
( > 1 

so that instability is monotonic there. Equation (3.1) 
together with (3.2) reveals that one of its roots is zero, 

a3 = - 73 + $ (1 + 72), 
( ) I 

which may not always be the root of maximum growth 
rate when the equality holds in (3.3). In other words, a4 = 2( 1 + 73) (52 + 73) - B( 1 + 273 + 72), 

the principal of exchange of stability is valid when as = 2(l + 72)(72 + 73) - B(1 + 27, + 73), 

ig=F (3.4) 
a6 = 2(1 + 73) (1 + 7J - B(2 + ‘s2 + t3), 

a, = (BD - 2A) (7z + 73) + AB - r,s3B2/Pr, 

if the density gradient is gravitationally stable. 
Inequality (3.3) is the generalization of Lapwood [lo] 

a8 = (BD - 2A) (1 + 73) + AB - t,B’/Pr, 

criterion a, = (BD - 2A) (1 + z2) + AB - z,B2/Pr, 

R, > 4n2/P, a, = A2 - ABD + r,t,B’jPr Pi. 

for convection in a single component fluid saturated For overstable motion we require C$ > 0 in (3.5) 
porous medium. The plane surface of marginal and (3.6). This is possible only if the inequalities 
stability on which the relation (3.4) holds will be 
denoted by 9. 

(72 + 73)R, + (1 + r3)R2 + (1 + 72)R3 < 8x4/4, 

(3.8) 

3.2. Overstable state 

In a three-component fluid saturated porous 
medium discussed here, the applied concentration 
gradient makes the velocity and concentration distri- 
butions out of phase and hence an overstable system 
or oscillatory system exists [ 1 l] for certain values of Ri. 

For overstable mode Q, = 0 and ci # 0 that is, ~7 = iai 
where ci has to be real. Substituting w = io, in (3.1) 
and equating the real and imaginary parts to zero we 
have 

d 
2 - wf (D - 1, - 1, - &) + r2~3 
Pr 

8x4 
-<R,+s+s 
P; 72 73 

(3.9) 

and 

87r4D - R, - R, - R, + G”’ > 0 (3.10) 

are satisfied on (3.7) where 

G = R: + R: + R: + 2(R,R, + R,R, + R,R,) + 8n4 

[4r2r3Pr-’ (R, + R27;’ + R37; ‘) - 2D(R, + R, + R3)] 

+ (8n4)2 
= 0, (3.5) 

D2 - 4r,r,yj- 
I 

A - (z2 + t3)i., - (1 + 73)i2 

- (1 + 72)A3 1 (3.6) 

provided wi # 0 where 
72 + 73 A=--- 

p; 
+ 7273 

B = ; + 1 + 72 + 73, 
1 

Equation (3.7) together with conditions (3.8-3.10) 
represent different surfaces depending on the values of 
7i. For example, for 0 < 72 and 73 < 1, (3.7) represents 
an hyperboloid denoted by 2, of which inequalities 
(3.8-3.10) select the appropriate branch giving rise to 
the conditions at which the most unstable oscillatory 
mode is marginally stable. On the other hand, in the 
case of singlecomponent fluid that is 72 = 73 = 1, (3.7) 

represents a paraboloid. Further the interesection of 
(3.7) with any plane parallel to the plane R, = 0 
becomes parabolic when 72, 73 = 0. 
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We note that the complex roots of the quartic 
characteristic equation (3.1) may become real roots 
without their parts passing through zero and hence the 
plane boundary 9 and the hyperboloid .R alone are 

not sufficient to determine fully the conditions under 
which marginal or oscillatory stabilities exist. Two 
such transitions, as in the case of three-component 
pure viscous flow discussed by [8] occur for the quartic 
equation (3.1) discussed here. The possible positions of 
the boundaries :/p and .X are illustrated in the next 
section for two sets of molecular properties. 

4. EXAMPLES OF STABILITY BOUNDARIES 

In this section the stability boundaries are discussed 
by taking specific examples based on the values of r2 

and TV. 

4.1. A case where TV, TV < 1 
Since the aim of this paper is to understand the 

mechanism of convection in geothermal regions, we 
consider the values of TV and 73 pertaining to this 
region. It is believed that the fluid in a geothermal 
region consists of aqueous solution of KCl, NaCl and 

sucrose having the values of molecular diffusion (see 

C81) - 
K L = 1.6 x 10m5 cm’s_i , K2 = 1.3 x 10-5cn12s-' 

K3 = 0.45 X lo-' cm’s_ ‘, P, = 10e4 (4.1) 

and Prandtl number Pr = 625. These values are also 
typical of laboratory models using salt-sugar solution 
where the diflusivity rates are not far from unity. 

Choosing specific values of P,, the relevant portions 
of the intersections of .Y and ,X with the R, plane are 
computed. By relevant portions we mean those which 
describe a change in the mode of instability for the 

most unstable mode. Figures l(a-c) show the relevant 
portions of the intersections of d and X with three 
planes E., = - 50, i., = 0 and i., = 50. The plane Y 

defined by 

and on which apldz = 0 is also shown. 
The asymptotes of the hyperbola are almost parallel, 

the slope of each being independent of the value of 1,. 
The upper asymptote has a slope 

In Figs. l(a-c), the oblique and horizontal hatchings 
denote respectively the existence of regions of salt 
fingers and overstable modes when the fastest and 
slowest diffusing components are destabilizing for 
example, the second quadrant of Fig. l(c) when 1, is 
sufficiently large and more extensively when these 
components are stabilizing for example, the fourth 
quadrant of Fig. l(a). 

4.2. A case where r2, T, CC 1 
As in the case of viscous flow [8], the discussion of 

three component system in a porous medium may be 

simplified if 72, t3+0 and Pr>>r, for &? approaches 
its asymptotes in this limit and the asymptotes 

themselves degenerate into a pair of planes: 

i., + 
Pr/P; 

! 1 
$,, 

(i2 + Q = L 
P; ’ 

(4.3) 

I 

i, + (t2 + t3)-’ (A, + 2.J = k. (4.4) 
I 

When E., = 0, relation (4.3) reduces to the condition 

for marginal stability of oscillatory modes of two- 
component systems investigated by Rudraiah et al. [6]. 

As a specific example we consider the aqueous 
system heat-KCI-sucrose (i = 1,2,3 respectively) for 
which (Griffiths [8]) K, = 1.4 x 10e3 cm’s_‘, ~~ = 

1.6 x 10m5 cm2s-2,rc3 = 0.45 x 10-5cm2 s-l and Pr 

= 7. Figures 2(a-c) show the relevant portions of the 

intersections of :% .# and .9’ with the three planes iL, 
= - 350, i., = 0 and i., = 350 respectively. It is easy to 
see that Z can be described very closely by (4.3) and 

(4.4). 
To depict the 3-dim. geometry more clearly, the 

intersection of the surfaces 9, .% and Y with each 
other, as functions of A, will also be defined and are 
shown as broken lines in Fig. 2. The two asymptotes 
(4.3) and (4.4) intersect at the point A where i., = l/P; 
and E., = - L3. This point lies to the left of 9 when i., 
< 0. The lower asymptote (4.4) of # and the plane 9: 

converge slowly to intersect at a point P where 

(4.5) 

(4.6) 

7* = Tj/tz = K3/K2. 

The locus of P for different values of i., is computed 

and is shown in the fourth quadrant of Fig. 2(a) as the 
almost vertical broken line. The planes 9 and Y 
converge slowly to interact at the point B where 

52 1 P; 1 (4.7) 

A,(1 - 73) 

12 = (1 -7z2)P; - (1 - 7J7*’ 
(4.8) 

The point P falls below B. Further, the point P lies 
within the region of static stability, so that a stabilizing 
gradient of the component with smallest diffusivity 
generates a range of values of 1, and 1, at which 
overstable modes occur. 
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FIG, l(aL (b). Stability boundaries for the most unstable mode when r1 = 0.81, ~~ = 0.28, t,=O.35, Pr=625 
and P, = low4 at three values of i., : (a) 1, = - 50, (b) i., = 0, (c) i., = 50. The coordinates are normalized 
with respect to the critica! Rayleigh number 8~’ and the lines are explained in the text. Horizontally hatched 

regions give overstable modes; oblique hatching shows conditions unstable to salt fingers. 
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\ 
(a) ~ 

\” 
\’ ‘\ 

(c) 

\’ 
2, \’ 

‘\ ’ 
‘\ ‘\ w \ \ 

Stable 

ib! 
in the second quadrant of the I.,, I., plane. We also note 

\ 
\ 1 

\ ! 
that (4.3) and .Y intersect at the point where 

E 

‘1 
J++ p; 

(p;)’ ’ 

%, = 

-w + p;, _ A 

m* 3’ 

FE. 2(a), (b). Stability boundaries for the most unstable mode 
when z1 = 0.011, ~~ = 0.003, f* = 0.28, Pr = 7 and P, = 
10Y4at threevalues of&: (a) ,I, = - 350, (b) i3 = 0, (c)I, = 
350. Hatching and heavy lines have the same meaning as in 
Fig. 1 and the points A, B and P move along the fine broken 

lines when i., is varied. 

Unstable 
4 + 

Pr(l - ?*)%, 1 

(Pr + Pi) - = p; 
(4.9) 

Stable 

For i, > (Pr f P;)r,/[P;(l - z,)] (~1379.5 in the 
present example), there are two points of intersection 
with 9 below B. We note that a destabilizing gradient 
of component 2 (& > 0) is no longer a necessary 
condition for the growth of salt-fingers. 

This stability analysis is concerned only with the 
critical wave number given by equation (3.2). However, 
if we allow the wave number c1 to vary, this stability 

P plane analysis yields further information on the physical 
behaviour of multi-component systems in a porous 
medium as explained below. 

When we allow OL to vary, the intersection B in Fig. 2 
must now divide conditions to the left, where only 

For %, > 0 (see Fig. 2~) the point A lies on the right of overstable motions are unstable, from conditions to 
B so that only one asymptote (4.4) is drawn. The the right where both overstable and marginal modes 
intersection ZY now lies on the line are possible. This behaviour is illustrated, following 
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Griffiths [8], schematically on the R,R, plane in Fig. 
3(a)for R, = - < < Oand in Fig. 3(b)for R3 = q > 0. 
As R, isvaried the intersections A, Band P move along 
the fine broken lines. Further, the values of R, at the 
intersections of ,9’, 9 and Y with the R, axis are also 
marked. 

Stable 

Stable 

(bl 

L La) 

--- 
5 .- 
‘t; R2 

s /1; 

FIG. 3 (a). Schematic three-component stability bounds 
(heavy lines) for (a) R, = -[CO, stabilising and (b) R, = 
- 9 > 0, destabilising. Values of R, at intersections with 
R, = 0 are marked. Both oscillatory and salt-finger modes 

are unstable in the double hatched region. 

In Fig. 3, another plane surface 6p is drawn such that 
to the right of which no wavelengths are overstable and 
only monotonic instability is possible. This plane 9 is 
the locus of the intersections of &? and 9 as the term 
nza2/k6 is allowed to vary in (3.7). In the limit tz, 73 + 
0, (3.1), (3.3), (4.3) and (4.4) imply that Y is vertical, 
while for the two-component case and arbitrary 
molecular properties, Rudraiah et nl. [6] have shown 
that the appropriate line can be obtained from 

R 

1 

= (Q + PrlPP, 
(1 + Pr/P;) 

+(1+7J(l +$Jg. 

To understand more clearly, consider a system 
which lies in the fourth quadrant of Fig. 3(a) and which 
always has dpJdz < 0. Then, for a given P,, the 
components with the greatest and smallest diffusivities, 
K~ and K~, both contribute negative density gradients 
opposing that due to component 2. When R, and Pi 
are sufficiently small, the system is stable. However, if 
R,, for a given Pi is increased until the (R,, R,, R3) 
coordinates cross .X when some wavelengths become 
overstable, beginning at a = 1, the mode which 
represents a balance between more efficient diffusive 
transport and Darcy damping. If R, is more stabilizing 
so that the conditions are just to the right of the plane 
9, the mode with wavenumber tl = 1 grows 
monotonically, with other modes remaining over- 
stable. R, is now large enough to overcome the stable 
stratification as well as Darcy resistance and at larger 
values, to the right of W, all unstable modes are direct. 

5. CONCLUSIONS 

The stability analysis of a three-component system 
in a porous medium, investigated using infinitesimal 
disturbances, reveals that: (i) the marginal stability of 

oscillatory modes occurs on a hyperboloid in Rayleigh 
number space but the surface is very closely 
approximated by its planar asymptotes for any 
diffusivity ratios. The effect of permeability is to reduce 
the region of salt-finger and overstable modes, and (ii) 
when the density gradients due to the components with 
the greatest and smallest diffusivities are of the same 
sign, salt-finger and overstable modes may be 
simultaneously unstable over a wide range of 
conditions and the effect of permeability is to suppress 
these modes. 

The stability analysis reveals that small 
concentrations of slowly diffusing properties are 
important because the influence of a component upon 
marginally stable oscillatory modes is proportional to 
pi (ACi)/P; while the influence of any component upon 
the occurrence of salt-fingers is proportional to 
I&ACiI/P;~i. For cases in which 72, 73 << 1, the 
conditions (4.3) and (4.4) for neutral stability of 
overstable modes can be written in terms of a total 
salinity Rayleigh number i,, = 1, + i.,. 
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INFLUENCE DE LA PERMEABILITE ET D’UN TROISIEME COMPOSANT DIFFUSANT, 
SUR LE DEBUT DE LA CONVECTION DANS UN MILIEU POREUX 

Rbsumi-On ktudie la stabilitC lintaire d’un systtme i trois composants dans un milieu poreux, en presence 
d’un gradient de densitC gravitationnellement stable. Une attention particuliere est portCe sur les systCmes 
avec Pe = 10W4, K, >>K,, K, et v>>K,. On montre que la front&e pour le dlclenchement de la surstabilitl 
peut itre approchbe par deux asymptotes dans un plan de nombres de Rayleigh. Les modes surstables et ti 
digitation sont simultantment surstables quand les gradients de densitC dtis aux composants sont de m&me 
signe et l’effet de la permeabiliti du milieu poreux est de supprimer les rtgions de modes de convection et de 

digitation dans le plan de nombres de Rayleigh. 

DER EINFLUSS DER PERMEABILITAT UND EINER DRITTEN DIFFUNDIERENDEN 
KOMPONENTE AUF DAS EINSETZEN DER KONVEKTION IN EINEM PORC)SEN 

MEDIUM 

Zusammenfasung--Die lineare Stabilitdt eines Dreikomponenten-Systems in einem porb;sen Medium tird 
fiir den Fall eines gravitationsbedingt stabilen Dichtegradienten untersucht. Das besondere Interesse gilt 
dabei Systemen mit P, = 10m4, K, D K,, K, and v >> K,. Es wird gezeigt, da8 die Grenze fiir das Auftreten 
von Uberstabilitlt durch zwei ebene Asymptoten in einer Rayleigh-Zahl-Ebene angentihert werden kann. 
Uberstabilittits- und “Salzfinger”-Gebiete erweisen sich als gleichzeitig iiberstabil, wenn die durch die 
Komponenten bedingten Dichtegradienten da&be Vorzeichen haben und der EinfluB der Permeabilitlt 
des por(isen Mediums den Bereichen der Konvektions- und der “Salzfinger’‘-Gebiete in der Rayleigh-Zahl- 

Ebene entgegenwirkt. 

BJlMIlHME nPOHRLIAEMOCTM M TPETbEI-0 fiM@@YHAMPYIOqEI-0 
KOMnOHEHTA HA B03HMKHOBEHME KOHBEKIJHM B nOPHCTOfl CPEAE 

AHHoTaunn ~ I’&nenyeTCB nHHeiiHaK yCTOi+UIBOCTb TpeXKOMnOHeHTHOi? ClfCTeMbI B nOpHCTOii CpCne 
“pH HaJIAWW rpanHeHTa IIJIOTHOCTW, He 3aBHCnIUerO OT nei%CTBHB CUJlbI TIIYeCTU. Oco6oe BHHMaHAe 
o6paueao Ha cI(cTeMbl c P, = 10m4, k, 5 k2. k, II Y 9 k,. nOKa3aH0, ‘(TO rpa”Huy BOSHHKHOBeHHR 
(tCBepXyCTOi%BOCTrl,, MOEHO annpOKCHMHpOBaTb nByMn n,IOCKHMH aCAMnTOTaMA B nnOCKOCTH qHCen 
Penea. HatineHo, YTO ctcsepxycroBqaeb&) peTHM H peme~ Tuna ((connHor0 nanbua)) Ha6nIonaIoTca 
OnHOBIYZMeHHO B TOM Cny’!ae, KOrLla rpa,lHeHTbI nnOTHOCT,I KOMnOHeHTOB CNCTcMbI I(MeIOT TOT )Ke 
3HaK. a npOHHUaeMOCTb nOpHCTOii CpenbI npHBOn&iT K nO,IaBneHHH, KOHBeKTHBHOrO pexituMa H pCxtaMa 

((conaHor0 nanbuar B nnocKoc-rH qAcen Penen. 


