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Abstract—The linear stability of three-component system in a porous medium is investigated in the presence

of a gravitationally stable density gradient. Particular attention is given to systems with P, = 1074, x, » ,,

kyandv » k,. Itis shown that the boundary for the onset of overstability can be approximated by two planar

asymptotes in a Rayleigh number plane. Overstable and salt-finger modes are found to be simultaneously

unstable when the density gradients due to the components are of the same sign and the effect of

permeability of the porous medium is to suppress the regions of convection and salt-finger modes in the
Rayleigh number plane.

NOMENCLATURE

a’, = n¥a? + 1);

G, concentration of the ith component
[kgm™];

AC;,  concentration difference between lower
and upper layers [kg m™3];

g, acceleration due to gravity [m s~ 2];

h, a vertical length scale [m];

k, permeability of porous medium [m?];

, pressure of the system [kg m™! s™%];

q, = (u,0,w), velocity vector [m s™'];

(x,y,2,), Cartesian co-ordinates [m];

L, time [s];

P, = k/h?, porous parameter;

P =a* P B

Pr, = vy/ky, the Prandtl or Schmidt number;

R, = gh’,AC;/vk,, Rayleigh number for the

ith component.

Greek symbols

o, the dimensionless wave number ;

B expansion coefficients [m® kg™ '];

Kp diffusivity of the ith component [m? s™'];
v, kinematic viscosity of fluid [m? s™'];
£.Pm  density and mean density of fluid;

T, = /iy, ratio of diffusivities;

Ais = z?a’R/a®;

A = A, + 4, the salinity Rayleigh number;
w, = o/a’;

o, = frequency [s™'].

1. INTRODUCTION

For MANY areas of technology such as chemical
engineering, petroleum industries and geothermal
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activity the study of heat and mass transfer through a
porous medium is of significance, This is usually
influenced by free convection whereby the void fluid
comes into circulation as a result of density differences
caused by temperature or concentration. Therefore,
there has been considerable interest recently in the
study of convection through a porous medium (see
[1]). The available literature on the study of free
convection through a porous medium is usually
limited by a single component fluid in which there isno
stabilizing or destabilizing gradient of concentration.

Free convection of a two-component fluid saturated
porous layer driven by the differential diffusion of two
properties such as heat and salt is also of interest in
numerous practical fields, particularly in some oil
recovery techniques. Although copious literature on
this dealing with both linear and non-linear theories is
available in the case of pure viscous flow (see [2]), very
little is known of the case of a fluid saturated porous
layer. Nield [3] has studied the convection of a two-
component fluid saturated porous layer using
infinitesimal amplitude analysis by considering two
different diffusive properties, one of which is stabilizing
and the other destabilizing. Here the emphasis is put on
the boundary conditions rather than determining
analytical expressions for the onset of convection and
heat transport.

Rudraiah and Prabhamani [4, 5] have studied the
linear and non-linear stability of a two-component
fluid in a porous medium in the presence of thermal
diffusion (ie. Soret effect) using the Liapunov
technique. Their analysis gives only the condition for
the onset of convection but says nothing about the
prediction of heat transport. Recently Rudraiah et al.
[6] and Srimani [7] have made a detailed analysis of
convection in a two-component fluid saturated porous
layer, using the local non-linear stability analysis,
where the condition for onset of convection and its
effect on heat transfer are reported.
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The literature cited above concentrates only on
doubly diffusive convection in a fluid saturated porous
medium. There are many fluid saturated porous
systems, however, in which more than two components
are present. For example, in geothermal regions the
lower part of the earth’s crust, particularly the
aquifers, is considered to be a fluid saturated porous
medium consisting of multi-components of fluid. An
extensive body of chemical and physical data of multi-
component fluid saturated porous medium in
geothermal regions now exists and a proper theory has
to be developed on the basis of this data. Therefore, a
proper understanding of field behaviour in geothermal
regions should include convection of a multi-
component fluid saturated porous medium.

In the usual viscous flow, Griffiths [8, 9] has
considered the influence of a third diffusive component
upon the onset of convection and has shown that
oscillatory and direct salt-finger modes are
simultaneously unstable under a wide range of
conditions when the density gradients due to the
components with the greatest and smallest difiusivities
are of the same sign. For geophysical applications
mentioned above, we have to take into account the
effect of resistance offered by the solid particles to the
fluid because the aquifers are considered to flow
through porous media. Therefore, the present analysis
was undertaken to provide results of a small amplitude
stability analysis for linear concentration gradients of
three components in a porous medium following the
analysis of Griffiths [8].

2. MATHEMATICAL FORMULATION

Consider a fluid saturated porous layer between two
horizontal parallel stress free boundaries at z = 0 and
h and containing three diffusing properties such that

Ky > Ky > Ky (2.1)

where k{i = 1, 2, 3) is the coefficient of molecular
diffusion for the ith component. The boundaries are
perfectly conducting for solute and the z axis is chosen
to be directed vertically upwards and the basic
property gradients are assumed to be vertical and
linear. The concentration difference between the
boundaries is AC; with the sign convention that AC; >
0, when the component is destabilizing. With the
assumptions and approximations which are frequently
used for convection in a homogeneous porous medium
saturated with three component Boussinesq fluid, the
general equations may be written as

aq 1 v p

—=-—Vp—- — 2.

a0 pmVp kq+pmg (2.2)

¢

— —kV3C. = —V -(qC. 23

(a! Ki > i (qC) (2.3)

Vq=0 2.4)

p=pnll +Zﬁici]' (2.5)
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In order to carry out the analysis it is convenient to
non-dimensionalize equations (2.2-2.4) scaling with
and x;. We then have Rayleigh numbers R,, diffusivity
ratios 7;, Prandtl number Pr and a porous parameter
P, given by

3 BAC, G
R =IPAC KV
VK Ky Ky
P, = k/h%. (i=123) (2.6)

In this paper, we consider only two-dimensional
motions with velocity q = (4,0,w) and the stream
function y as

Y

W= 2.7

oY
u=_— .
x

- y
oz

Then the linearized perturbation equations (2.2-2.4)
after eliminating the pressure are

1 ¢ 1 > a6,
— —+— V= " 28
(Pr ot +P1>V v i; cx @8)
é oy
— —1V?)0, =R, .
(ﬁ[ T ) (=R @9)

where the 0, are non-dimensional concentrations. The
boundary conditions are

62
61.:1//:%:0, atz=0and 1.

z

(2.10)

3. LINEAR STABILITY ANALYSIS

Eliminating 0, in equations (2.8) and (2.9) and
assuming the normal mode solutions of the form e
cos max sin nz with ¢ = ¢, + io; we obtain the
dispersion relation

w* N w? (Pr 14t
—t— = T
Pr  Pr\P, 2T

l+1,+1 T T 1,7

+w2 —21_&3*._24._3 273

P Pr Pr Pr
R . R Ty + 773 + T4 T,T3
— AL — Ly — A +wo|————+ —
! z 3} I: P Pr

—{ry+ Tt — (1 +13)4, — (1 + ‘tz)/13:|

. 1 b A\ _o ;
| ~A4 - ===

23\ P ! T, 13 (3.1)
with w = g/a2, P; = a*P,, i, = (n*«?/a®) R; and a* =
2 + 1).

We note that this dispersion relation (3.1) is of 4th-
order in contrast to the cubic equation obtained by
Rudraiah et al. [6] in the case of two-component fluid.
We also note that when P|—1 (ie. P, = 1/a?) this
dispersion relation tends to the one given by Griffiths
[8] in the case of viscous flow. In other words when P,
= n"%(a® + 1)7! we can get the stability results of
viscous flow discussed by [8]. This surprising result
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may be due to the fact that although the order of the
derivatives in Darcy and viscous flow are different the
order of the time derivatives remain the same. This
result is purely local and not global.

3.1. Marginal state

Marginal state is valid when 6, = 0 and ¢, = 0. For
the most unstable mode at marginal stability
1

=1, 4=-—R.
o =g a

Relations (3.1) and (3.2) imply that for the most
unstable mode w is real and positive in the half space

R, 4n?
T;

(3.2)

>

P, (3.3)

™
A

il

i=1
so that instability is monotonic there. Equation (3.1)
together with (3.2) reveals that one of its roots is zero,
which may not always be the root of maximum growth
rate when the equality holds in (3.3). In other words,

the principal of exchange of stability is valid when
3 R, 4n?

i=1 7T P,

(3.4)

if the density gradient is gravitationally stable.
Inequality (3.3) is the generalization of Lapwood [10]
criterion

R, = 4n*/P,

for convection in a single component fluid saturated
porous medium. The plane surface of marginal
stability on which the relation (3.4) holds will be
denoted by 2.

3.2. Overstable state

In a three-component fluid saturated porous
medium discussed here, the applied concentration
gradient makes the velocity and concentration distri-
butions out of phase and hence an overstabie system
or oscillatory system exists [ 11] for certain values of R;.
For overstable mode o, = 0 and o, # O thatis, o = ig;
where g; has to be real. Substituting w = iw;, in (3.1)
and equating the real and imaginary parts to zero we
have

(D — A, — Ay — A3) + ToT3

1 ;
x( —AI—Q—§)=0, (3.5)

E LS
w? = <—B—>[A —(ty + 1304 — (1 + 13)4,

-1+ 12)/13:’ (3.6)
provided w; # 0 where

T, + T3 1 1
A= + — 4 —
P, TZ”( " pr
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Equation (3.5) together with (3.2) and (3.6) describes a
conicoid

a,R} + a,R% + a;R% + a,R\R,
asR,R; + agR,R; + 87*
x (a;R,+agR; +agR;) + 8n*)a, =0 (3.7)

where

Pr
a, = — 1+7y— (T4 + 13),

Pr
a, = — <12 + F)“ + T3),

= — +_r (1+ )
a; = T T5),
3 3 P, 2

a, =2(1 + 13) (1, + 13) — B(1 + 215 + 1,),
as =2(1 + 1) (t; + 73) — B(1 + 21, + 73),
ag =2(1 +13) (1 + 1;) — B2 + 1, + 13),

a, = (BD — 2A4) (1, + 13) + AB — 7,7,B*/Pr,
ag = (BD — 24)(1 + 13) + AB — 1,B*/Pr,
a, = (BD — 24)(1 + 1,) + AB — 1,B?/Pr,
a, = A* — ABD + t,1,B%/Pr P,

For overstable motion we require w? > 0 in (3.5)
and (3.6). This is possible only if the inequalities

(ty + )R, + (1 + 13)R, + (1 + 1,)R; < 87*A,

(3.8)
8n* R R
i,sR,+~2+~i’ (3.9)
Py T2 T3
and
871D —R, —R,—R, +G*>0 (3.10)

are satisfied on (3.7) where

G =R?+ R2+ R} +2(RR, + RR; + R,R;) + 8n*
[47273Pr 71 (R + Ry1; ' + Ryt3 ') — 2D(R; + R, + R;)]
+ (8n*)? (Dz —~ 41,1, P%T)

Equation (3.7) together with conditions (3.8-3.10)
represent different surfaces depending on the values of
7. For example, for 0 < 1, and 7y < 1,(3.7) represents
an hyperboloid denoted by s#, of which inequalities
(3.8-3.10) select the appropriate branch giving rise to
the conditions at which the most unstable oscillatory
mode is marginally stable. On the other hand, in the
case of single component fluid thatist, = 7, = 1,(3.7)
represents a paraboloid. Further the interesection of
(3.7) with any plane parallel to the plane R, = 0
becomes parabolic when 1,, 1; = 0.
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We note that the complex roots of the quartic
characteristic equation (3.1) may become real roots
without their parts passing through zero and hence the
plane boundary # and the hyperboloid # alone are
not sufficient to determine fully the conditions under
which marginal or oscillatory stabilities exist. Two
such transitions, as in the case of three-component
pure viscous flow discussed by [8] occur for the quartic
equation (3.1) discussed here. The possible positions of
the boundaries % and .# are illustrated in the next
section for two sets of molecular properties.

4. EXAMPLES OF STABILITY BOUNDARIES

In this section the stability boundaries are discussed
by taking specific examples based on the values of 7,
and t;.

4.1. A case where 1,73 < 1

Since the aim of this paper is to understand the
mechanism of convection in geothermal regions, we
consider the values of 7, and 7, pertaining to this
region. It is believed that the fluid in a geothermal
region consists of aqueous solution of KCl, NaCl and
sucrose having the values of molecular diffusion (see

(8]
Ky =16x10"%cm?s™!, Kk, =13x10"%cm?s"!

Ky =045 x 10" 5cm?s™ !,

L]

P, =10"* .1)
and Prandtl number Pr = 625. These values are also
typical of laboratory models using salt—sugar solution
where the diffusivity rates are not far from unity.

Choosing specific values of P, the relevant portions
of the intersections of 2 and s# with the R, plane are
computed. By relevant portions we mean those which
describe a change in the mode of instability for the
most unstable mode. Figures 1(a—c) show the relevant
portions of the intersections of 2 and »# with three
planes i, = — 50, 4y = Oand 4, = 50. The plane &
defined by

YR =0 4.2)
and on which dp/dz = 0 is also shown.

The asymptotes of the hyperbola are almost parallel,
the slope of each being independent of the value of 1.
The upper asymptote has a slope

Pr Pr
(e u)/(F ) =0

In Figs. 1(a—c), the oblique and horizontal hatchings
denote respectively the existence of regions of salt
fingers and overstable modes when the fastest and
slowest diffusing components are destabilizing for
example, the second quadrant of Fig. 1(c) when 4, is
sufficiently large and more extensively when these
components are stabilizing for example, the fourth
quadrant of Fig. 1(a).
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4.2. A case where 1,5, 14 < 1

As in the case of viscous flow [8], the discussion of
three component system in a porous medium may be
simplified if t,, 1;—0 and Pr>»t, for # approaches
its asymptotes in this limit and the asymptotes
themselves degenerate into a pair of planes:

, Pr/Py . 1
bt o+ Ay) = 4.3)
r P
;Pl
. I
g+ Ty +13) 7 (A + A3) = 4.4)

=5
When 4, = 0, relation (4.3) reduces to the condition
for marginal stability of oscillatory modes of two-
component systems investigated by Rudraiah ez al. [6].

As a specific example we consider the aqueous
system heat—-KCl-sucrose (i = 1,2,3 respectively) for
which (Griffiths [8]) x; = 14 x 10 3 em?s ™!, k, =
1.6 x 1073cm?s ™2, k; = 045 x 10" °cm?s™ ! and Pr
= 7. Figures 2(a—c) show the relevant portions of the
intersections of 2, # and % with the three planes 4,
= —350,4, = Oand 4; = 350 respectively. Itiseasy to
see that ¥ can be described very closely by (4.3) and
(4.4).

To depict the 3-dim. geometry more clearly, the
intersection of the surfaces 2, # and . with each
other, as functions of 1, will also be defined and are
shown as broken lines in Fig. 2. The two asymptotes
(4.3)and (4.4) intersect at the point A where 4, = 1/P|
and A, = — ;. This point lies to the left of 2 when 4,
< 0. The lower asymptote (4.4) of 5# and the plane 2:

Ay Ay 1
it T2 T3 P 1

converge slowly to intersect at a point P where

1 1—x
A== —|A * .
L= |43} P (4.5)
) A
Ay = Lj-‘ (4.6)
T*
where

T, = T3/T, = K3/K,.

The locus of P for different values of 4, is computed
and is shown in the fourth quadrant of Fig. 2(a) as the
almost vertical broken line. The planes # and ¥
converge slowly to interact at the point B where

1 -t 1
"*’(1_12)[ 7 _F;]’ “.7
P T2 _'13(1—73)
2SR (-, “8)

The point P falls below B. Further, the point P lies
within the region of static stability, so that a stabilizing
gradient of the component with smallest diffusivity
generates a range of values of i, and 1, at which
overstable modes occur.
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F1G. 1{a), (b}. Stability boundaries for the most unstable mode when t, = 0.81, tr; = 0.28, 1, =035, Pr=625

and P, = 10™* at three values of 23: (a) 4; = —50,(b) 4, = 0,(c) 2; = 50. The coordinates are normalized

with respect to the critical Rayleigh number 87 and the lines are explained in the text. Horizontally hatched
regions give overstable modes; oblique hatching shows conditions unstable to salt fingers.
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For A,>0(see Fig. 2c} the point A lies on the right of
# so that only one asymptote {4.4) is drawn. The
intersection 2 now lies on the line
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FiG. 2{a), (b). Stability boundaries for the most unstable mode

when 1, = 0011, 1; = 0003, 7, = 028, Pr = 7and P, =

10" % atthree values of 4;:{a)dy = ~350,(b) 4, = 0,(c) 4, =

350. Hatching and heavy lines have the same meaning as in

Fig. 1 and the points A, B and P move along the fine broken
lines when 4, is varied,

Pr{l —t )4, 1

Pr+P) P (49)

t

in the second quadrant of the 4,, 1, plane. We alsonote
that (4.3) and ¢ intersect at the point where

Pr + P,
by =t 4.10
Ty w10

. —(Pr+P)
A2=~—TF;—)—2—L—Z34 @.11)

For Ay > (Pr + P)r/IP(1 — 1,)] (13795 in the
present exampie), there are two points of intersection
with 2 below B. We note that a destabilizing gradient
of component 2 (4, > 0) is no longer a necessary
condition for the growth of salt-fingers.

This stability analysis is concerned only with the
critical wave number given by equation (3.2). However,
if we allow the wave number « to vary, this stability
analysis yields further information on the physical
behaviour of multi-component systems in a porous
medium as explained below.

When we allow « to vary, the intersection # in Fig. 2
must now divide conditions to the left, where only
overstable motions are unstable, from conditions to
the right where both overstable and marginal modes
are possible. This behaviour is illustrated, following
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Griffiths [8], schematically on the R,R, plane in Fig.
3(a)for Ry = — { < 0andin Fig. 3(b)for R, = > 0.
As R;isvaried the intersections A, B and P move along
the fine broken lines. Further, the values of R, at the
intersections of &, 2 and . with the R, axis are also
marked.

Ry

Unstable

R2

Stable A

R2

Stable

FiG. 3 (a). Schematic three-component stability bounds

(heavy lines) for (a) R; = —{ <0, stabilising and (b) R; =

— n > 0, destabilising. Values of R, at intersections with

R, = 0 are marked. Both oscillatory and salt-finger modes
are unstable in the double hatched region.
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In Fig. 3, another plane surface % is drawn such that
to the right of which no wavelengths are overstable and
only monotonic instability is possible. This plane % is
the locus of the intersections of # and 2 as the term
n?o?/k® is allowed to vary in (3.7). In the limit 7,, 75 —
0, (3.1), (3.3), (4.3) and (4.4) imply that & is vertical,
while for the two-component case and arbitrary
molecular properties, Rudraiah et al. [6] have shown
that the appropriate line can be obtained from

(t, + Pr/P)R, 7, \8r*
=212, 4 1+ .
147 Pr/P, ] P,

YT (1 + Pr/P)

To understand more clearly, consider a system
which lies in the fourth quadrant of Fig. 3(a) and which
always has dp/dz < 0. Then, for a given P,, the
components with the greatest and smallest diffusivities,
k, and k;, both contribute negative density gradients
opposing that due to component 2. When R, and P,
are sufficiently small, the system is stable. However, if
R,, for a given Pjis increased until the (R,, R,, R;)
coordinates cross # when some wavelengths become
overstable, beginning at « = 1, the mode which
represents a balance between more efficient diffusive
transport and Darcy damping. If R, is more stabilizing
so that the conditions are just to the right of the plane
2, the mode with wavenumber « = 1 grows
monotonically, with other modes remaining over-
stable. R, is now large enough to overcome the stable
stratification as well as Darcy resistance and at larger
values, to the right of %, all unstable modes are direct.

5. CONCLUSIONS

The stability analysis of a three-component system
in a porous medium, investigated using infinitesimal
disturbances, reveals that: (i) the marginal stability of
oscillatory modes occurs on a hyperboloid in Rayleigh
number space but the surface is very closely
approximated by its planar asymptotes for any
diffusivity ratios. The effect of permeability is to reduce
the region of salt-finger and overstable modes, and (ii)
when the density gradients due to the components with
the greatest and smallest diffusivities are of the same
sign, salt-finger and overstable modes may be
simultaneously unstable over a wide range of
conditions and the effect of permeability is to suppress
these modes.

The stability analysis reveals that small
concentrations of slowly diffusing properties are
important because the influence of a component upon
marginally stable oscillatory modes is proportional to
Bi (AC;)/ Py while the influence of any component upon
the occurrence of salt-fingers is proportional to
|BAC,|/Pik;. For cases in which 7,, 73 « 1, the
conditions (4.3) and (4.4) for neutral stability of
overstable modes can be written in terms of a total
salinity Rayleigh number i, = 4, + Aj.
Acknowledgements—This work was supported by the UGC
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INFLUENCE DE LA PERMEABILITE ET D'UN TROISIEME COMPOSANT DIFFUSANT,
SUR LE DEBUT DE LA CONVECTION DANS UN MILIEU POREUX

Résumé—On étudie la stabilité linéaire d’un systéme 4 trois composants dans un milieu poreux, en présence

d'un gradient de densité gravitationnellement stable. Une attention particuliére est portée sur les systémes

avec Pe = 1074, K, » K ,, Ky et v>>K,. On montre que la frontiére pour le déclenchement de la surstabilité

peut étre approchée par deux asymptotes dans un plan de nombres de Rayleigh. Les modes surstables et a

digitation sont simultanément surstables quand les gradients de densité diis aux composants sont de méme

signe et I'effet de la perméabilité du milieu poreux est de supprimer les régions de modes de convection et de
digitation dans le plan de nombres de Rayleigh.

DER EINFLUSS DER PERMEABILITAT UND EINER DRITTEN DIFFUNDIERENDEN
KOMPONENTE AUF DAS EINSETZEN DER KONVEKTION IN EINEM POROSEN
MEDIUM

Zusammenfassung—Die lineare Stabilitét eines Dreikomponenten-Systems in einem porésen Medium wird
fiir den Fall eines gravitationsbedingt stabilen Dichtegradienten untersucht. Das besondere Interesse gilt
dabei Systemen mit P, = 10™%, K, » K,, K; and v » K. Es wird gezeigt, daB die Grenze fiir das Auftreten
von Uberstabilitit durch zwei ebene Asymptoten in einer Rayleigh-Zahl-Ebene angenihert werden kann.
Uberstabilitits- und “Salzfinger™-Gebiete erweisen sich als gleichzeitig iiberstabil, wenn die durch die
Komponenten bedingten Dichtegradienten dasselbe Vorzeichen haben und der Einflul der Permeabilitit
des porosen Mediums den Bereichen der Konvektions- und der “Salzfinger”-Gebiete in der Rayleigh-Zahl-
Ebene entgegenwirkt.

BJIMAHHUE TTPOHUUAEMOCTH U TPETBETO JHU®®VYHAUPYIOUIETO
KOMITOHEHTA HA BO3HUKHOBEHUE KOHBEKLIMHU B NMOPHUCTOW CPEJIE

Annoramns — HUccneayerca nuneiiHas yCTOWYHBOCTH TPEXKOMMNOHEHTHOH CHCTEMBI B NOPHCTOMH cpene
NpH HaJIMYHH TPaJHEHTa TUIOTHOCTH, HE 3aBHCALIETO OT AeHCTBHA CHibl TaxecTH. Ocoboe BHUMaHue
obpaieno na cuctembl ¢ P, =10"% k, » k,, k3 u v » k,. Tloka3aHo, 4TO paHULly BO3HUKHOBEHHS
«CBEPXYCTOHYHBOCTH» MOXHO aNMPOKCHMHPOBATh ABYMS MIOCKHMH ACHMIITOTAMH B ITIOCKOCTH YHCEJ
Penes. HaliieHo, 4TO «CBEPXYCTOHYMBLIA» PEXHM H PeXHM THIA «COJISHOTO Majblua» HabMOJaroTCH
OAHOBPEMEHHO B TOM Cliy4yae, KOI/Ja IPajMEHThbl MIOTHOCTH KOMIIOHEHTOB CHCTEMBI HMEIOT TOT XK€
3HaK, a IPOHHLAEMOCTL NOPUCTON CPeAbl NTPHBOAHT K NMOJAABJICHHIO KOHBEKTHBHOIO PEXHMA H DEKHMa
«COJIAHOIO AaJjblia» B TUIOCKOCTH 4Hces Penes.



